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Abstract—Complex propagation in linear time-invariant loss-
less isotropic closed waveguides is a theoretically intriguing sub-
ject. Complex modes are also practically important in the char-
acterization of discontinuities as they contribute in pairs with
complex conjugate (c.c.) propagation constants to local power
storage. By the systematic application of Lorentz’s reciprocity
theorem, we derive the constraints linking complex propagation
constant, Poynting’s integral, and electromagnetic energy storage
per unit length. Previously known conditions are recovered,
and novel constraints on the exchange power between the two
components of the pairs are derived. It is emphasized that
existing relationships individually derived by different methods
and scattered in the literature, as well as novel ones, are derived
from a single fundamental theorem. This set of constraints is
believed to pose the tightest necessary conditions so far for the
existence of complex waves.

Index Terms—Closed waveguides, complex modes, electromag-
netic theory.

I. INTRODUCTION

COMPLEX modes of lossless reciprocal closed wave-
guides were first discovered in the numerical simulations

of dielectrically loaded cylindrical waveguides in the 1960’s
[1] and their appearance in inhomogeneous waveguides con-
stituted an intriguing phenomenon ever since [2].

Theoretical investigations on this subject also started in the
early 1960’s [3]–[5] leading to a set of power and energy
constraints and, between the other, highlighting the vanishing
of the complex modal Poynting vector of each the two
components of the complex mode. This set of constraints was
further developed in a simple and elegant manner in order to
consider nonbidirectional waveguides [6]; in fact, an important
part of the work on complex modes that followed dealt with
anisotropic waveguides which are excluded from this paper’s
investigation.

More recently, complex modes were found in common
boxed planar transmission media such as finline [7], [13]
and microstrip [8], and were again the object of renewed
theoretical attention [9]–[11]. Additional constraints on the
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fields of complex pairs and their appearance in a shielded
circular waveguide were also further described in [12].

Apart from their academic interest, their practical impor-
tance also is now well understood: a pair of modes with
complex conjugate (c.c.) propagation constants constitutes a
reactive mechanism of the guide similar to a real mode below
cutoff, and they begin to appear as 19th and 20th mode
in a typical 50- microstrip and fin-line [8] on alumina
substrate. Consequently, their excitation in the presence of a
discontinuity is to be accounted for in order for the equivalent
network of the discontinuity to be accurate.

While early studies such as [3]–[6] are based on the direct
manipulation of Maxwell’s equations, more recent ones like
[9]–[11] rely on a discretization of the propagation problem
in the guide in terms of the TE/TM modes of the perfectly
conducting empty guide. In [13], the hybrid modes at cutoff
were taken as basis for the discretization.

A more recent approach to the investigation of the prop-
agation properties of modes in isotropic passive or active
closed waveguide was based instead on the systematic use
of the Lorentz’s reciprocity theorem [14] without recourse
to any discrete representation. Although that study was not
focused on complex modes in lossless guides, it nonethe-
less produced an additional relationship between frequency
variation of the complex propagation constant and energy
storage.

However, each of the two modes constituting the pair with
c.c. propagation constants cannot physically exist in absence
of the other so that any physical field can only be expressed
as a combination of the two.

In [14], the problem was formulated in terms of the proper-
ties of anindividualmode; hence, exchange properties between
two coexisting modes forming the pair escaped investigation.

It is the purpose of this paper to systematically apply
Lorentz’s theorem to the wholepair. It will be seen that
besides recovering and, in one case, modifying somewhat a
constraint that was previously derived, this approach yields
additional novel relationships between the complex exchange
power, the propagation constant, and the stored energy. To
the authors’ best knowledge, the whole set of constraints
constitutes the tightest necessary conditions so far for the
existence of complex modes.

Constraints such as these prove useful in predicting the
onset of complex waves, in checking numerical data pro-
duced by field analysis programs, and in avoiding spurious
solutions.
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Fig. 1. Geometry of the problem.

II. A PPLICATION OF LORENTZ’S

THEOREM TO COMPLEX MODES

The differential form of Lorentz’s theorem for uniform
reciprocal waveguides is expressed as

(1)

where , is solution consistent with the electric and
magnetic currents and permeability distributions (, , ,

), while ( , ) is consistent with ( , , , ), i.e.,
satisfying Maxwell’s equations

(2)

together with the appropriate boundary conditions.
In (1), the suffix “ ” denotes the transverse part,the unit

vector in the longitudinal direction, and the cross section of
the guide (see Fig. 1).

In the following, we will first consider sources to be absent,
i.e., and, moreover, we shall always
assume ( , ) to correspond to a progressive complex mode,
in particular

(3)

with

The fields , and , form the complex mode
pair; although the fields of the pair are not, in general, c.c.
of each other, the following relationships are easily derived
from [13]

(4)

It should be noted that we are dealing with isotropic wave-
guides: for this class, and not just is the eigenvalue of
the telegrapher’s equation [13]. Hence, the pairs (, )
and ( , ) are independent solutions. Dealing with the
quartet ( , , , ) only becomes necessary when
the waveguide is girotropic.

At the same time, four different choices of (, , ,
) will be assumed, which are summarized in Table I. It is

emphasized that the first two of these correspond to physically

TABLE I
THE FOUR CANONICAL CHOICES OFFIELDS AND SOURCES FOR THE

SYSTEMATIC APPLICATION OF LORENTZ’S RECIPROCITY THEOREM

realizable situations, whereas the latter two are just formal
solutions of Maxwell’s equations with boundary conditions
without physical counterpart, as the corresponding permittiv-
ities are negative.

i) First Choice: , , , , , :
progressive wave. In fact, by taking the c.c. of (2), it is evident
that i) is an acceptable solution of Maxwell’s equation.

After substituting i) in (1), we obtain

c.c. c.c.

c.c.

By defining

with . The above equation reduces to

c.c. (5)

Since the -dependent terms must vanish separately for arbi-
trary , (5) yields

and, consequently,

(6a)

as well as

(6b)

ii) Second Choice:( , , , , , , ):
regressive wave. By substituting ii) in (2), it is seen that this
too is acceptable, implying

(7)

Substituting in (1) gives

(8)
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iii) Third Choice: ( , , , , , , , ,
, , ): forward propagating c.c. wave, i.e.,

(9)

Substituting in (1) produces

(10)

It is noted that the right-hand side (RHS) contains the angular
frequency times the difference of the stored energies in the
electric and magnetic fields per unit length, i.e., the stored
power (Lagrangian function ).

We now rewrite in the RHS

c.c.

(11)

where the phases are defined in the following. We
introduce, moreover, the quantities below with dimensions of
energy densities

real

etc.,

and

with , , and on account of (4).
Using (8), we recast condition (10) as

(12)

Since the above must be satisfied for arbitrary, we deduce

or (13a)

Fig. 2. Geometrical interpretation of (14a) and (14b).

where, moreover, , owing to (4). After
setting for brevity , we obtain

(13b)

The latter (13b) can be written as

(14a)

(14b)

In the complex plane, (14a) and (14b) afford the geometrical
interpretation of Fig. 2 and can be written compactly as the
following single complex equation:

(14c)

iv) Fourth Choice: , , , , , , :
regressive wave. Again, this is an acceptable choice upon
consideration of (2).

Hence, we assume

(15a)

(15b)

With this last choice, the left-hand side (LHS) of (1)
vanishes and we are left with

c.c.

c.c.

c.c.

c.c.

(16)

again the vanishing of the independent-variations for arbi-
trary leads to the following two conditions:

(17a)
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where the suffixes, denote, respectively, the transverse and
longitudinal parts, the suffixes, the electric and magnetic
parts of the relevant quantities, and

(17b)

denotes the total electromagnetic energy density of the
transverse part of the first component ( ) of the pair,

the corresponding density of the longitudinal part, and
similarly for the second component of the pair ( ).
Moreover, owing to (4), , .

The above four choices are summarized in Table I, whereas
the results are combined in the following theorem:

Theorem: The conditions necessary for the existence of
complex modes in a linear time-invariant lossless isotropic
waveguide are given by

i) ;
ii) ;
iii) ;
iv) ;
v) ;
vi) .

In particular, condition i) implying the vanishing of the
integrals of the Poynting vectors of each of the two compo-
nents of the complex wave is well known [1]–[6]. Condition
v), also holding for mode below cutoff, was obtained in [6],
together with relationship vi), requiring the balance between
electric and magnetic energies of the whole complex wave.
Condition ii), stating that the “exchange powers” between 1
and 2 and vice versa are the c.c. and opposite of each other,
was first derived in [10]; conditions iii) and iv), however, are
quite new: iii) expresses the fact that the product of complex
propagation constant and integral of the “exchange” power is
proportional to the difference between electric and magnetic
complex “exchange” energies, and iv) states that transverse
and longitudinal complex exchange energies have identical
real parts.

It is, however, emphasized that the four existing relation-
ships, individually derived by different methods in different
references, as well as the two novel ones, are derived here just
by means of the systematic application of Lorentz’s reciprocity
theorem (1).

III. FREQUENCY VARIATION

Neglecting material dispersion, differentiation of the source-
free Maxwell (1) with respect to frequency gives

(18)

which can again be interpreted as Maxwell equations for the
fields

satisfying the same boundary conditions of the original fields
in presence of a magnetic current source and an
electric current source .

Again, systematic application of Lorentz’s theorem to the
pair of complex modes produces several novel relationships
between the frequency derivatives of, , and stored energies.
These are not reported here for sake of brevity, as their
derivation is tedious and their physical interpretation mostly
obscure, except for the one result reported below omitting
proof, namely,

(19)

Equation (19) predicts the existence of a complex mode over
an open interval of frequencies rather than just locally at a
point: the latter “broad-band” property was observed in [13],
while investigating a numerical example of fin-line.

IV. CONCLUSIONS

Systematic application of Lorentz’s theorem provides the
means of generating the set of tightest necessary conditions
so far for the existence of complex modes in closed lossless
reciprocal waveguides, quite independently of any particular
discrete representation of the fields.

Such conditions can be exploited for predicting the likely
excitation of complex waves as well as for checking and
directing the numerical solution of the field problem, in
particular in avoiding spurious roots.

REFERENCES

[1] P. J. B. Clarricoats and K. R. Slinn, “Complex modes of propagation
in dielectric loaded circular waveguide,”Electron. Lett.,vol. 1, pp.
145–146, 1965.

[2] J. D. Rhodes “General constraints on propagation characteristics of
electromagnetic waves in uniform inhomogeneous waveguides,” inProc.
Inst. Elect. Eng.,vol. 118, no. 7, pp. 849–856, July 1971.

[3] P. Chorney, “Power and energy relations in bidirectional waveguides,”
in Proc. Symp. Electromagnetic Fluid Dynamics Gaseous Plasma.New
York: Polytechnic Press, 1961, pp. 195–210.

[4] , “Power and energy relation in bidirectional waveguides,” Res.
Lab. Electron., MIT, Cambridge, Tech. Rep. 396, Sept. 1, 1961.

[5] S. R. Laxpati and R. Mittra, “Energy considerations in open and
closed waveguides,”IEEE Trans. Antennas Propagat.,vol. AP-13, pp.
883–890, Nov. 1965.

[6] P. Chorney, A. Bers, and P. Penfield, “Further generalization of wave-
guide theorems,”IEEE Trans. Microwave Theory Tech.,vol. MTT-15,
pp. 58–59, Jan. 1967.
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