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General Constraints on the Propagation of Complex
Waves in Closed Lossless Isotropic Waveguides
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Abstract—Complex propagation in linear time-invariant loss- fields of complex pairs and their appearance in a shielded
less isotropic closed waveguides is a theoretically intriguing sub- cjrcular waveguide were also further described in [12].
ject. Complex modes are also practically important in the char- Apart from their academic interest, their practical impor-
acterization of discontinuities as they contribute in pairs with . - . .
complex conjugate (c.c.) propagation constants to local power {@nc€ also is now well understood: a pair of modes with
storage. By the systematic application of Lorentz's reciprocity complex conjugate (c.c.) propagation constants constitutes a
theorem, we derive the constraints linking complex propagation reactive mechanism of the guide similar to a real mode below
constant, Poynting's integral, and electromagnetic energy storage ¢ytoff. and they begin to appear as 19th and 20th mode
per unit length. Previously known conditions are recovered, . ,t ical 5092 mi tri d fin-li 8 lumi
and novel constraints on the exchange power between the wo'l @ typica microstrip .an _|n_ |ne_ [8] on alumina
Components of the pairs are derived. It is emphasized that Substrate Consequently, the|r excitation in the pl‘esence Of a
existing relationships individually derived by different methods discontinuity is to be accounted for in order for the equivalent
and scattered in the literature, as well as novel ones, are derived network of the discontinuity to be accurate.

from a single fundamental theorem. This set of constraints is While early studies such as [3]-[6] are based on the direct
believed to pose the tightest necessary conditions so far for the . . , . -
existence of complex waves. manipulation of Maxwell's equations, more recent ones like
[9]-[11] rely on a discretization of the propagation problem
in the guide in terms of the TE/TM modes of the perfectly
conducting empty guide. In [13], the hybrid modes at cutoff
were taken as basis for the discretization.

A more recent approach to the investigation of the prop-

agation properties of modes in isotropic passive or active

‘ OMdPLEX m(f)_desd_of lOSSIZS_S r;zmprocal_ Cl?S_Ed ;’V"’_‘V%Iosed waveguide was based instead on the systematic use
guides were first discovered In the numerical simulationg e | grentz’s reciprocity theorem [14] without recourse

of dielectrigally loaded cyI_ingiricaI waveguides in the.1960’§0 any discrete representation. Although that study was not
[1] and their appearance in inhomogeneous waveguides “kused on complex modes in lossless guides, it nonethe-

St'ﬁ:ed a? |n|tr_|gum? prt].enomentcr)‘n evebr. S'?C? [Z]It ted | tLess produced an additional relationship between frequency
eore |c,;a investigations on this subject aiso started In 108 o0 of the complex propagation constant and energy

early 1960's [3]-[5] leading to a set of power and energ lorage

constraints and, between the other, highlighting the vanishing|_|owe'ver each of the two modes constituting the pair with

of the complex modal Poynting vector of each the two . : o
C.C. propagation constants cannot physically exist in absence

components of the complex mode. This set of constraints waist‘he other so that anv physical field can onlv be expressed
further developed in a simple and elegant manner in order 30 L y phy y P
a combination of the two.

consider nonbidirectional waveguides [6]; in fact, an im ortaft .
g [6] b In [14], the problem was formulated in terms of the proper-

part of the work on complex modes that followed dealt with

anisotropic waveguides which are excluded from this papePgS of anindividualmode; hence, exchange properties between

investigation. two coexisting modes forming the pair escaped investigation.

More recently, complex modes were found in common 't IS the purpose of this paper to systematically apply

boxed planar transmission media such as finline [7], [L3frentz’s theorem to the wholgair. It will be seen that

and microstrip [8], and were again the object of renewedfSides recovering and, in one case, modifying somewhat a

theoretical attention [9]-[11]. Additional constraints on th&onstraint that was previously derived, this approach yields
additional novel relationships between the complex exchange
power, the propagation constant, and the stored energy. To
the authors’ best knowledge, the whole set of constraints
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TABLE |
E 4 THE FOUR CANONICAL CHOICES OF FIELDS AND SOURCES FOR THE
(EJH) -'-F.F.-[F:.. H" —_ SYSTEMATIC APPLICATION OF LORENTZ'S RECIPROCITY THEOREM
o Choice (E’H’e’n) Direction of propagation
g 5 i (-E*H* 1) progressive
) i (-E*H*e,1) regressive
Fig. 1. Geometry of the problem. i € H &) progressive
iv (E" H* -¢,-1) regressive

Il. APPLICATION OF LORENTZ'S

THEOREM TO COMPLEX MODES . . . .
realizable situations, whereas the latter two are just formal

The differential form of Lorentz's theorem for uniformsplutions of Maxwell’s equations with boundary conditions

reciprocal waveguides is expressed as without physical counterpart, as the corresponding permittiv-
9 ) ) ities are negative.
87:// [(E: x Hy — E{ x Hy) -z ds i) First Choice: (E/, H', ¢/, /) = (=E*, H*, ¢, p):
S progressive wavdn fact, by taking the c.c. of (2), it is evident
. that i) is an acceptable solution of Maxwell's equation.
= - )E-E - (p—-p H-H]d AL ;
Jw// [e=2) (= #) Ids After substituting i) in (1), we obtain
S
. / — / . —_— . / —_ / . a * * — Lz
+ff @E-rE-ME oM HG @ 9 {ltew wirecrsten, xwi, +oo]
2 z
s
where E H is solution consistgpt vv.ith.the. electric and +[(et1 x b} +e, X hfl)e_?“z—i-c.c.}} zds = 0.
magnetic currents and permeability distributiods M, e,
i), while (E/, H') is consistent with J’, M/, ¢, /), i.e., -
satisfying Maxwell's equations By defining
VxE=-jopH-M Py = |Pyleiti E//eti xhy -zds, i, j=1,2
VxH=jweE+J 2 2

together with the appropriate boundary conditions.
In (1), the suffix " denotes the transverse paztthe unit
:/ﬁ:tg["g;h(esz;cénggdir)l.al direction, ang the cross section of a{Re(Pr1) + Re(Pas) be 20 |
In the following, we will first consider sources to be absent, + 5{(a+iB)(Pra+ P3)e’* +cc}=0.  (5)
ie.,J=J =M =M = 0 and, moreover, we shall always
assumeR, H) to correspond to a progressive complex mod&ince thez-dependent terms must vanish separately for arbi-
in particular trary z, (5) yields

with Re(P;;) > 0. The above equation reduces to

E(z, y, z) =ei(z, y)e " + ex(z, y)e 7 Re(P11) = — Re(Pz2)
H(.’L’, Y, Z) :hl(.’IZ, y)e—”uz +h2($7 y)e—"rzz (3)
with and, consequently,
N =9 =a+if=a?+ 3% Re(P11) =Re(Pa2) =0 (6a)

The fields(ey, hy) and (ez, hy) form the complex mode as well as
pair; although the fields of the pair are not, in general, c.c:
of each other, the following relationships are easily derived

from [13] Py =—Fy. (6b)

e, =e;, hy =hj ec,=-¢, h,=-hl. (4 i) Second Choice:(E', H', £, i/) = (=E*, H*, ¢, p,):
regressive waveBy substituting ii) in (2), it is seen that this

It should be noted that we are dealing with isotropic waves s acceptable, implying

guides: for this classy? and not justy is the eigenvalue of
the telegrapher’s equation [13]. Hence, the pairs,(++*)
and ~, —v*) are independent solutions. Dealing with the
quartet ¢y, +v*, —v, —7*) only becomes necessary when Hi(z, y, 2) = — by, (z, y)e"* =i, (z, y)e=*. (7)
the waveguide is girotropic.

At the same time, four different choices aE’( H’, ¢/, Substituting in (1) gives
') will be assumed, which are summarized in Table I. It is
emphasized that the first two of these correspond to physically Im(Py1) = Im(Py) = 0 (8)

Ei(z, y, 2) = — e, (z, y)e"* — e}, (x, y)e*”
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iii) Third Choice: (E/, i, ¢’, i/, J', M) = (E*, H*, —¢, . i
—u, 0, 0): forward propagating c.c. wavé.e., ok, 12 ¢+,/,_£
e E 2
’ _E*( ) w 412
E (.’L’, Y, Z) - x, Y, % Zh

— ¥ e (g ej,ﬁz + eX(xr e—j,ﬁz
, N { 1( ’ y) 2( ’ y) } Fig. 2. Geometrical interpretation of (14a) and (14b).
H'(z, y, ) =H"(z, y, 2)

=c~**{hj(z, y)e’™ +hj(z, y)e ™7} (9)

where, moreoverE.; = E.2, E;1 = Ej2 owing to (4). After

Substituting in (1) produces setting for brevitys);» = 1, we obtain

—2¢72*{alm(Py; + Pyy) —Va? + B[ Pafsin(p +¢)
+23/aZ B2 Py sin(i + 12 — 262)} = WlBer, cos(xe) = B, cos(in)]

g Mo (10) — W[E., sin(x.) — En,, sin(x»)]. (13b)

“ 24+ 32|P 1
= Qw// <5@ _ |H|2>dS =9 m| 12| cos(¢ + )
s

It is noted that the right-hand side (RHS) contains the angularThe latter (13b) can be written as

frequencyw times the difference of the stored energies in the _ E.,sin(xe) — Ep,, sin(xz) 14
electric and magnetic fields per unit length, i.e., the stored cot(p +1) = E.,, cos(xe) — En,, cos(xn)’ (14a)
power (Lagrangian functior). Pol2 =w2{E2 +E2 _9E. E _
We now rewrite in the RHS [l =L B et ot X(};I.El;))
2 _  —2az 2 2 —248z
" =c ’{|el| - |e?|2 +(e1-exe™V T +C.C)} , Inthe complex plane, (142) and (14b) afford the geometrical
=c ***{le1|* + |e2|® + 2ley - e2] cos(x. — 282)}H|* interpretation of Fig. 2 and can be written compactly as the
=¢2%{|hy|? + [ho|? + 2|h; - ho|cos(xp — 262)} following single complex equation:
(11) YPry = jw(Ee,, = Bn,). (14c)

where the phases.,; are defined in the following. We iv) Fourth Choice: (E/, H', ¢, i/) = (E*, H*, —¢, —p):
introduce, moreover, the quantities below with dimensions mgressive waveAgain, this is an acceptable choice upon

energy densities consideration of (2).
Hence, we assume
_ ] &1a.12 19 — I a2 . 3 g
Ba= [ Gl as: Ba= [[ Jleapas E/(x, y, 2) =" {e, (&, 1) + €, (a, y)et
. e e — zlel, (@, y)e % 4 el (x, y)e )
FE.12 :// §e1e§ ds = GJXeEelg, FE.12 real (153)
S o H'(z, y, z) = ™ {-hj (z, y)e 77 - hf, (z, y)'
By :// ?|h1|2 ds,etc., +Z[hzl (z, y)e—j,ﬁz + hiz (, y)e+j,8,Z]}'
S (15b)
and With this last choice, the left-hand side (LHS) of (1)

vanishes and we are left with

€ —2j8z ®
[ Stten=ten e 4o e, o)

with F.1 = E.o, B} = Ej0, andL; = L, on account of (4). ¢

Ly =w(FEe — Epy), Ly = w(Ee2 — Ep2)

Using (8), we recast condition (10) as _(CZI_622+C_C.)+(|et2|2_|6Z2|2)62J,BZ}dS
H —2j8z *
— 2v/ a2 + 32| Po|{sin(¢ + ¢12) cos(26z) +// ?0 (Jhe, > =, |2)e= 27 +(hy, -hf, +c.c)
s

— cos(p + 12)sin(282)}
=Ly + Ly + 2w{E. ,[cos(x.) cos(20z)
+ sin(xe) sin(2682)|}
— By, ,[cos(xn) cos(2f3z) +sin(xp) sin(26z)].  (12) again the vanishing of the independentariations for arbi-

trary z leads to the following two conditions:

Since the above must be satisfied for arbitrayyve deduce
E., , cosxe, +En,,, cos xp, = Ee_,, cos Xe, +En_,, COS Xe,

Li+Ly=0 or Egq+FE.o=Eu+Ew (133) (17a)

= (hay b2, +C.C)+ (hy, [P = [hey ) e} dS = 0
(16)
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where the suffixeg, » denote, respectively, the transverse and Again, systematic application of Lorentz’s theorem to the
longitudinal parts, the suffixes, h the electric and magnetic pair of complex modes produces several novel relationships
parts of the relevant quantities, and between the frequency derivativesgfP, and stored energies.
These are not reported here for sake of brevity, as their
En =FEa Ep=Ea (17b)  yerivation is tediofs and their physical interpretati{)n mostly
E,; denotes the total electromagnetic energy density of th@scure, except for the one result reported below omitting
transverse part of the first componerit£ 1) of the pair, proof, namely,
E_, the corresponding density of the longitudinal part, and
similarly for the second component of the pair € 2). 9w
Moreover, owing to (4)F.1 = Eeo, Epi = Epo.
The above four choices are summarized in Table I, wherdaguation (19) predicts the existence of a complex mode over
the results are combined in the following theorem: an open interval of frequencies rather than just locally at a
Theorem: The conditions necessary for the existence INt: the latter “broad-band” property was observed in [13],
complex modes in a linear time-invariant lossless isotropfhile investigating a numerical example of fin-line.
waveguide are given by
i) Pip = Py =0;
||) P12 = —P2*1;~ N
III) ’}/P12~ = jw(Eelz - Eh12);
iv) Re(F:,) = Re(F.,,);
V) Etl = EZl = Et2 = Ezz;

a

[Pll(CU) =+ PQQ(C())] =0. (19)

IV. CONCLUSIONS

Systematic application of Lorentz’'s theorem provides the
means of generating the set of tightest necessary conditions
so far for the existence of complex modes in closed lossless
reciprocal waveguides, quite independently of any particular

Vi) E. = E., +E., = By, + Ep, = Ep.

discrete representation of the fields.

In particular, condition i) implying the vanishing of the Such conditions can be exploited for predicting the likely
integrals of the Poynting vectors of each of the two compexcitation of complex waves as well as for checking and
nents of the complex wave is well known [1]-[6]. Conditiordirecting the numerical solution of the field problem, in
v), also holding for mode below cutoff, was obtained in [6]particular in avoiding spurious roots.

together with relationship vi), requiring the balance between
electric and magnetic energies of the whole complex wave.
Condition ii), stating that the “exchange powers” between ][1]
and 2 and vice versa are the c.c. and opposite of each other,
was first derived in [10]; conditions iii) and iv), however, are
quite new: iii) expresses the fact that the product of compley]
propagation constant and integral of the “exchange” power is
proportional to the difference between electric and magneti!
complex “exchange” energies, and iv) states that transverse
and longitudinal complex exchange energies have identicgd]
real parts. 5]
It is, however, emphasized that the four existing relation-
ships, individually derived by different methods in different

references, as well as the two novel ones, are derived here jl,@t

by means of the systematic application of Lorentz’s reciprocity
theorem (1). [71

Il (8]

Neglecting material dispersion, differentiation of the sourcesg]
free Maxwell (1) with respect to frequency gives

FREQUENCY VARIATION

JE _ _OH [10]

VX ge = T, T

vx B _ % (18) 11
dw Jw

which can again be interpreted as Maxwell equations for the]

fields
OB OH
Ow’ Ow

satisfying the same boundary conditions of the original fielqi‘]
in presence of a magnetic current soude= —;j;H and an
electric current sourcd = —jcE.

(23]
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